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Missing Satellites Problem

• Simulations predict ~104 dark matter 
subhalos bound to the Milky Way 
!

• Observationally, we see < 102 satellite 
dwarf galaxies 
!

• Where are the “missing satellites”? 
!
– Observational incompleteness: 

faint dwarf galaxies are hard to find 
and our observational coverage is 
largely incomplete  
!

– Galaxy formation: Only massive 
subhalos retain enough gas to 
form stars and galaxies  
!

– Dark matter characteristics: Warm 
or self-interacting dark matter will 
suppress subhalos formation
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2590 S. Garrison-Kimmel et al.

Figure 11. Cumulative stellar mass functions around paired hosts within
the local volume using the preferred AM relation discussed in the text; not
shown are those systems that include a third massive halo nearby (Siegfried
& Roy and Serena & Venus). The pair Zeus & Hera are highlighted in
magenta. The current count of galaxies within the same volume around the
MW and M31 is shown in cyan (McConnachie 2012), which flattens at small
mass, likely because of incompleteness. We predict ∼1000 galaxies having
M∗ ≥ 103 M⊙ within this volume, compared to the ∼70 currently known.

M∗ ≃ 107 M⊙ significantly. Our modified relation (applied to
ELVIS haloes in black) does a better job by assigning less stellar
mass to smaller haloes. For this reason, we will adopt this pre-
ferred AM relation in all relevant figures to follow. In magenta,
we highlight the satellites of the host Hera, which happens to be
a particularly good match to the data (at least in the regime where
it is likely complete) in this and several figures that follow. Based
on our preferred AM relation, we predict ∼200–300 galaxies with
M∗ ≥ 103 M⊙ within 300 kpc of the MW/M31.

We note that both AM prescriptions underpredict the satellite
stellar mass function for the MW/M31 at M∗ ≥ 108 M⊙ when
considering the average satellite mass function. At these relatively
high masses, however, the halo-to-halo scatter is large and the well-
established rarity of LMC-like objects (Boylan-Kolchin et al. 2010;
Busha et al. 2011; Tollerud et al. 2011) biases the mean result
relative to observations of the LG. The stellar mass functions around
individual hosts with large subhaloes, e.g. Hera in magenta, match
observations well over four decades in stellar mass after applying
the preferred AM relation.

Fig. 11 presents stellar mass functions for simulated local vol-
umes (unions of 1.2 Mpc spheres around either host) using our
preferred AM relation. There is one line for each pair of haloes
in the ELVIS sample, excluding the two cases that contain a third
large halo nearby (detailed in Section 2.3). Our AM-based predic-
tion agrees reasonably well with the data for M∗ ! 5 × 106 M⊙, but
rises much more steeply towards lower masses, in the regime where
the current census is almost certainly incomplete. We highlight the
pair Zeus & Hera in magenta. This pair has an M∗ function that
happens to be very similar to that of the LG. We see that if the AM
relation is extrapolated down to M∗ ∼ 103 M⊙ we expect ∼1000

galaxies within the local volume (compared to the ∼70 systems
currently known). Future surveys like those performed with LSST
(Ivezic et al. 2008) will help test such extrapolations, exploring
the relationship between halo mass and galaxy mass at the very
threshold luminosities of galaxy formation.

4.2 H I mass functions

While future resolved star surveys promise to discover faint optical
galaxies throughout the local volume, H I surveys offer a comple-
mentary approach for the discovery of dwarfs in the near-field (Blitz
et al. 1999; Blitz & Robishaw 2000; Sternberg, McKee & Wolfire
2002; Adams, Giovanelli & Haynes 2013; Faerman, Sternberg &
McKee 2013). While the faintest dwarfs within ∼300 kpc of either
the MW or M31 are gas-poor dwarf spheroidal galaxies, gas-rich
dwarfs are the norm beyond the virial regions of either giant (Grce-
vich & Putman 2009; McConnachie 2012). Leo T, at a distance
of ∼400 kpc from the MW, is an example of a very faint system that
is gas rich (M∗ ≃ MH I ≃ 105 M⊙; Ryan-Weber et al. 2008) and ap-
parently falling into the MW virial radius for the first time (Rocha,
Peter & Bullock 2012). Similar, though possibly even less lumi-
nous, objects may fill the local volume, and if so, could be detected
in blind searches for neutral hydrogen. Recently, for example, the
gas-rich galaxy Leo P (MH I ≃ 3 M∗ ≃ 106 M⊙) was discovered at
a distance of ∼1.5–2 Mpc using H I observations (Giovanelli et al.
2013; Rhode et al. 2013).

Here we use the ELVIS suite to provide some general expecta-
tions for the H I mass function in the local volume. Building off
of the results presented in Section 4.1, we use our preferred AM
relation coupled with an empirically derived M∗−MH I relation to
assign H I masses to haloes in our simulated local volumes. Specif-
ically, we fit a power-law relation to the gas-rich dwarfs in the LG
from McConnachie (2012), ensuring that the gas–fraction relation
matches that found by Huang et al. (2012b) at higher masses:

MH I = 7.7 × 104 M⊙
(

M∗

105 M⊙

)1.2

. (5)

Of course, this simple assumption of a one-to-one relation between
stellar mass and H I mass is highly idealized. In reality, the gas to
stellar mass relation shows a considerable amount of scatter (Kan-
nappan 2004; McGaugh 2005; Stewart et al. 2009; Huang et al.
2012a, 2012b; Kannappan et al. 2013), and this is especially true
for the faintest systems in the LG (as summarized in McConnachie
2012). A more realistic investigation of the H I content of LG galax-
ies is reserved for future work.

We further assume that any halo that has been within the virial
radius of a giant has had all of its H I gas removed. This presupposes
that a process such as ram pressure stripping removes the gas from
satellites upon infall and is motivated by observations demonstrating
that the vast majority of LG satellites have negligible neutral gas
content (Grcevich & Putman 2009). The small number of gas-poor
dwarfs that lie beyond the virial radii of either M31 or the MW (i.e.
Cetus and Tucana) may very well be explained as backslash haloes
(see Sales et al. 2007; Teyssier et al. 2012). Of course, some of the
largest satellite galaxies in the LG (e.g. the LMC and NGC 205) are
clearly able to retain H I for a non-negligible period of time after
infall. This would suggest that our assumptions will lead to some
undercounting of H I-rich galaxies, primarily at the highest masses.
Some never accreted haloes, however, may have lost their gas via
interactions with other field objects or with the cosmic web (Benı́tez-
Llambay et al. 2013), which may lead to some overcounting at small
masses.
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Finding Milky Way  
Satellite Galaxies
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Visual Searches

• First objects discovered by visual scans of photographic plates 

7

1
9
3
8
B
H
a
r
O
.
9
0
8
.
.
.
.
1
S

Shapley (1938)

Johnson & Sandage (1956)

B
rig

ht
ne

ss

“Redness”

M3

Sculptor



Alex Drlica-Wagner   |   Fermilab 8

Sculptor

ESO/DSS2

1.2m Telescope 
Photographic Plates
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Discovery Timeline
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Matched-Filter Searches

10
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Figure 1. (g − r, r) CMD showing the two reddest and two bluest theoretical
isochrones for old stellar populations ([Fe/H]= −2.27, −1.5 and age = 8, 14
Gyr) at a distance modulus of m−M = 16.5 (∼ 20 kpc), generated from Girardi
et al. (2004). The shaded region shows pixels that pass the selection criteria.

populated by old, metal-poor stars. Simon & Geha (2007) ob-
tained spectra of stars in eight of the newly discovered dwarfs—
CVn, CVn II, Com, Her, Leo IV, Leo T, UMa, and UMa II—and
found mean metallicities in the range −2.29 < [Fe/H]< −1.97.
Based on this result, we consider isochrones for populations
with metallicities of [Fe/H] = −1.5 and −2.27 (the lower
limit in Girardi et al. 2004) and with ages 8 and 14 Gyr. Four
isochrones in these ranges can be used to bound the region of
CMD space we are interested in, namely the four combina-
tions of [Fe/H] = −1.5 and −2.27 and ages 8 and 14 Gyr.
Figure 1 shows these four isochrones projected to a distance of
20 kpc.

We define the selection criteria by the CMD envelope inclu-
sive of these isochrones +/− the 1σ (g − r) color measurement
error as a function of r magnitude. Shifting these isochrones
over distances between m−M = 16.5 and 24.0 in 0.5 mag steps
defines 16 different selection criteria appropriate for old stellar
populations between d ∼ 20 kpc and ! 630 kpc. We truncate
our color–magnitude selection template at a faint magnitude
limit of r = 22.0, beyond which photometric uncertainties in
the colors and star/galaxy separation limit the ability to detect
these populations. We also truncate the selection template at
g − r = 1.0, as including redder objects adds more noise from
MW dwarf stars than signal from more distant red giant branch
(RGB) stars. Finally we do not include stars with δg or δr >
0.3 mag in our analysis. To efficiently select stars within this
CMD envelope, we treat the CMD as an image of 0.025×0.125
(color × mag) pixels and determine which stars fall into pixels
classified as “good” according to the selection criteria. Figure 1
shows an example of the selection criteria, in this case for
m−M = 16.5 (∼ 20 kpc). The shaded region highlights pixels
that would be classed as “good” for a system at ∼20 kpc.

3.3. Spatial Smoothing

After the photometric cuts are applied, we bin the spatial
(R.A., decl.) positions of the selected stars into an array, E,
with 0.◦02×0.◦02 pixel size. We use a locally defined coordinate

Table 1
Angular Sizes of the Satellites Detected in SDSS

Object rh

(arcmin)

Boötes 12.6
Boötes II 4.2
Canes Venatici 8.9
Canes Venatici II 1.6
Coma Berenices 6.0
Hercules 8.6
Leo IV 2.5
Leo V 0.8
Leo T 1.4
Segue 1 4.4
Ursa Major 11.3
Ursa Major II 16.0
Willman 1 2.3

system to avoid projection effects. We then convolve this two-
dimensional (2D) array with a spatial kernel corresponding to
the expected surface density profile of a dSph. We refer to this
smoothed spatial array as A. For our spatial kernel we use a
Plummer profile with a 4.′5 scale length. This value provides
an effective compromise between the angular scale lengths
of compact and/or distant objects with those of closer/more
extended objects. For reference the angular sizes of the new
satellites are listed in Table 1. We use the rh values derived by
Martin et al. (2008) except for Leo V (Belokurov et al. 2008).

The normalized signal in each pixel of A, denoted by S, gives
the number of standard deviations above the local mean for each
element:

S = A − Ā

Aσ

.

The arrays of running means, Ā, and running standard devia-
tions, Aσ , are both calculated over a 0.◦9 × 0.◦9 window around
each pixel of A. In particular, Aσ is given by

Aσ =

√
n(A − Ā)2 ∗ B − ((A − Ā) ∗ B)2

n(n − 1)
.

B is a box filter with n elements and is the same size as
the running average window. The resulting array Aσ gives
the standard deviation value for each pixel of A as measured
over the 0.◦9 × 0.◦9 span of the filter. In the next section, we will
define the detection threshold of this survey in terms of S, as
well as in terms of the local stellar density E.

3.4. Detection Threshold(s)

In a large survey such as ours, it is critical to set detection
thresholds strict enough to eliminate false detections but loose
enough to retain known objects and promising candidates. To
characterize the frequency and magnitude of purely random
fluctuations in stellar density analyzed with our algorithm, we
measure the maximum value of S for 199,000 5.◦5×3◦ simulated
fields of randomly distributed stars that have been smoothed
as described in the previous section. The only difference is
that there is no gradient in stellar density across each field.
In the interest of computational efficiency we do not use a
running window for the mean and σ of each simulated field.
The field size is chosen such that 1000 fields roughly total an
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Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars
at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20.0, respectively.
The solid lines show Girardi isochrones for 8 and 14 Gyr populations with [Fe/H] = −1.5 and−2.3. (b) and (d) These CM filters overplotted
on stars from a 1 deg2 field to illustrate the character of the foreground contamination as a function of dwarf distance. Data are from SDSS
DR7.
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Figure 2: (a) Map of all stars in the field around the Ursa Major I dwarf satellite, MV = −5.5, d = 100 kpc. (b) Map of stars passing the CM
filter projected to m −M = 20.0 shown in Figure 1(c). (c) Spatially smoothed number density map of the stars in (b). The Ursa Major I
dwarf galaxy has a µV ,0 of only 27.5 mag arcsec2 [63]. Data are from SDSS DR7.

(iii) Identify Statistically Significant Overdensities. A
search of 10 000 deg2 of SDSS data, optimized for dwarfs
at 16 different distances, and a single choice of stellar
population and scale size require evaluating the statistical
significance of 600 million data pixels that do not necessarily
follow a Gaussian distribution of signal. Setting the detection
threshold to select candidate dwarf galaxies was done by
simulating numerous realizations of the search, assuming a
random distribution of point sources and permitting only
one completely spurious detection. The threshold is set to be
a function of point source number density after CM filtering.

(iv) Follow-up Candidates. Regions detected above the
detection threshold are considered candidates for MW
dwarf galaxies. Although the threshold is set to prevent
the detection of any stochastic fluctuations of a randomly
distributed set of point sources [61], the detections are only
“candidates” because resolved dwarf galaxies are not the only

possible overdensities of point sources expected in the sky.
For example, fluctuations in the abundant tidal debris in
the Milky Way’s halo or (un)bound star clusters could be
detected. It is essential to obtain follow-up photometry to
find the color-magnitude sequence of stars expected for a
dwarf galaxy and also follow-up spectroscopy to measure the
dark mass content (dark matter is required to be classified as
a galaxy) based on the observed line-of-sight velocities.

This search algorithm is very efficient. In the WWJ
search, the eleven strongest detections of sources unclassified
prior to SDSS were 11 of the 14 (probable) ultra-faint
Milky Way dwarfs. All of these but Boötes II were known
prior to the WWJ search. See references in Section 3 for
details of the follow-up observations that confirmed these
objects to be dwarf galaxies. Follow-up observations of
as-yet unclassified SDSS dwarf galaxy candidates are on-
going by several groups, including a group at the IoA at

4 Advances in Astronomy

20 kpc

22

20

18

16

14

0.50 1 1.5−0.5
g − r

 r

(a)

22

20

18

16

14

0.50 1 1.5−0.5
g − r

r

(b)

100 kpc

22

20

18

16

14

0.50 1 1.5−0.5
g − r

 r

(c)

22

20

18

16

14

0.50 1 1.5−0.5
g − r

r

(d)

Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars
at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20.0, respectively.
The solid lines show Girardi isochrones for 8 and 14 Gyr populations with [Fe/H] = −1.5 and−2.3. (b) and (d) These CM filters overplotted
on stars from a 1 deg2 field to illustrate the character of the foreground contamination as a function of dwarf distance. Data are from SDSS
DR7.
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Figure 2: (a) Map of all stars in the field around the Ursa Major I dwarf satellite, MV = −5.5, d = 100 kpc. (b) Map of stars passing the CM
filter projected to m −M = 20.0 shown in Figure 1(c). (c) Spatially smoothed number density map of the stars in (b). The Ursa Major I
dwarf galaxy has a µV ,0 of only 27.5 mag arcsec2 [63]. Data are from SDSS DR7.

(iii) Identify Statistically Significant Overdensities. A
search of 10 000 deg2 of SDSS data, optimized for dwarfs
at 16 different distances, and a single choice of stellar
population and scale size require evaluating the statistical
significance of 600 million data pixels that do not necessarily
follow a Gaussian distribution of signal. Setting the detection
threshold to select candidate dwarf galaxies was done by
simulating numerous realizations of the search, assuming a
random distribution of point sources and permitting only
one completely spurious detection. The threshold is set to be
a function of point source number density after CM filtering.

(iv) Follow-up Candidates. Regions detected above the
detection threshold are considered candidates for MW
dwarf galaxies. Although the threshold is set to prevent
the detection of any stochastic fluctuations of a randomly
distributed set of point sources [61], the detections are only
“candidates” because resolved dwarf galaxies are not the only

possible overdensities of point sources expected in the sky.
For example, fluctuations in the abundant tidal debris in
the Milky Way’s halo or (un)bound star clusters could be
detected. It is essential to obtain follow-up photometry to
find the color-magnitude sequence of stars expected for a
dwarf galaxy and also follow-up spectroscopy to measure the
dark mass content (dark matter is required to be classified as
a galaxy) based on the observed line-of-sight velocities.

This search algorithm is very efficient. In the WWJ
search, the eleven strongest detections of sources unclassified
prior to SDSS were 11 of the 14 (probable) ultra-faint
Milky Way dwarfs. All of these but Boötes II were known
prior to the WWJ search. See references in Section 3 for
details of the follow-up observations that confirmed these
objects to be dwarf galaxies. Follow-up observations of
as-yet unclassified SDSS dwarf galaxy candidates are on-
going by several groups, including a group at the IoA at
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Segue 1

Marla Geha
2.5m Telescope 

SDSS CCD Camera
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Segue 1

Marla Geha

Spectroscopic Follow-up: Stellar Kinematics

8
Geha et al. 2009, ApJ, 692, 1464

Satellite member stars are 
distinguished by their distinct 
locus in velocity-space!
!
Velocity dispersion is an indicator 
of mass, e.g., for Segue 1 a mass-
to-light ratio of >1000 within the 
half-light radius!

2.5m Telescope 
SDSS CCD Camera
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Discovery Timeline

13

SDSS Begins
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SDSS DR10

14

4.1.3. Ultra-faint satellites
Visible as bright dots of different colors in the maps in Figs. 4

and 5 are the compact stellar over-densities corresponding to the
Galactic satellites that give the impression of being still intact.
The brightest of these ‘‘hot pixels’’ correspond to the well-known
star clusters and classical dwarf galaxies, while the very faint and
barely visible small-scale over-densities mark the locations of the
so-called ultra-faint satellites of the Milky Way. Although several
of these, including Boo I, Boo III, CVn I and UMa II, are seen in this
picture with a naked eye, the rest of the population of these objects
is too insignificant and can only be unearthed via an automated
over-density search. The first example of such an automated stellar
over-density detection procedure is presented in Irwin (1994) who
apply the method to the data from the photographic plates of the
POSS I/II and UKST surveys scanned at the APM facility in Cam-
bridge. A vast area of 20,000 square degree of the sky is searched
but only one new nearby dwarf galaxy is detected, namely the Sex-
tans dSph. A variant of the procedure is used, albeit with a little
less luck, by Kleyna et al. (1997), and subsequently by Willman
et al. (2005a) and Willman et al. (2005b) who actually find the
two very first examples of ultra-faint objects in the SDSS data.
The ease with which these systems reveal themselves in a stellar
halo density map akin to the ‘‘Field of Streams’’ (see Zucker et al.,
2006; Belokurov et al., 2006c) helped to re-animate the search
for new Milky Way satellites and more than a dozen of new discov-
eries have been reported in quick succession (Zucker et al., 2006;
Belokurov et al., 2007c; Irwin et al., 2007; Koposov et al., 2007;
Walsh et al., 2007; Belokurov et al., 2008; Belokurov et al., 2009;
Grillmair, 2009; Belokurov et al., 2010). Fig. 6 maps the distribution
of all presently known SDSS ultra-faint satellites on the Galactic
sky.

The accuracy and the stability of the SDSS photometry makes it
possible for the over-density detection algorithms to reach excep-
tionally faint levels of surface brightness across gigantic areas of
the sky. However, even though genuine Galactic satellites can be
identified in the SDSS as groups of only few tens of stars, their
structural parameters can not be established with adequate accu-
racy using the same data. Deep follow-up imaging on telescopes
like INT, CFHT, LBT, Magellan, MMT, Subaru and most recently
HST, has played a vital role in confirming the nature of the tiny
stellar blobs in the SDSS, as well as in pinning down their precise
sizes, ellipticities and their stellar content. The most recent, deep
and wide photometric studies of a significant fraction of the new
SDSS satellites are published by Okamoto et al. (2012) and Sand
et al. (2012). They point out that even at distances D > 100 kpc

from the Galactic centre, the outer density contours of CVn II,
Leo IV and Leo V display extensions and perturbations that are
probably due to the influence of the Milky Way tides. Similarly,
there is now little doubt that both UMa II and Her are excessively
stretched, as their high ellipticities as first glimpsed at discovery
(Zucker et al., 2006; Belokurov et al., 2007c) are confirmed with
deeper data (Munoz et al., 2010; Sand et al., 2009). Note, however
that apart from these two obvious outliers there does not seem to
be any significant difference in the ellipticity distributions of the
UFDs and the Classical dwarfs contrary to the early claims of Mar-
tin et al. (2008). This is convincingly demonstrated by Sand et al.
(2012) with the help of the imaging data at least 2 magnitudes dee-
per than the original SDSS. They, however, detect a more subtle
sign of the tidal harassment: the preference of the density contours
of the SDSS satellites to align with the direction to the Galactic
centre.

As far as the current data is concerned, the SDSS dwarfs do not
appear to form a distinct class of their own, but rather are the
extension of the population of the Classical dwarfs to exceptionally
faint absolute magnitudes. However, as more and more meager
luminosities are reached, it becomes clear how extreme the faint-
est of the UFDs are. The brightest of the group, CVn I and Leo T
show the usual for their Classical counter-parts signs of the
prolonged star-formation. For example, CVn I hosts both Blue
Horizontal Branch and Red Horizontal Branch populations, while
Leo T shows off a sprinkle of Blue Loop stars. However, the rest
of the ensemble appears to have narrow CMD sequences with no
measurable color spread around the conventional diagnostic
features, e.g., MSTO and/or RGB, thus providing zero evidence for
stellar populations born at different epochs (e.g., Okamoto et al.,
2012). The CMDs of the UFDs have revealed no secrets even under
the piercing gaze of the HST: all three objects studied by Brown
et al. (2012) appear to be as old as the ancient Galactic globular
cluster M92. Yet the low/medium and high-resolution follow-up
spectroscopy reveals a rich variety of chemical abundances some-
what unexpected for such a no-frills CMD structure. The first low-
resolution studies of Simon and Geha (2007) and Kirby et al. (2008)
already evince the existence of appreciable ½Fe=H" spreads in the
SDSS dwarfs with the metallicity distribution stretching to extre-
mely low values. Analyzing the medium and high resolution spec-
tra of the Boo I system, Norris et al. (2010) measure the spread in
½Fe=H" of #1.7 and the ½Fe=H" dispersion of #0.4 around the mean
value of $2.55 at MV # $6. It seems that this behavior of decreas-
ing mean metallicity with luminosity while maintaining a signifi-
cant enrichment spread is representative of the UFD sample as a

Fig. 6. Distribution of the classical dwarf galaxies (blue filled circles) and the SDSS ultra-faint satellites (red filled circles), including three ultra-faint star clusters, in Galactic
coordinates. The SDSS DR8 imaging footprint is shown in grey. Dashed line marks the tentative orbit of the Sgr dwarf galaxy. Galactic l ¼ 0& , b ¼ 0& is at the centre of the
figure.

110 V. Belokurov / New Astronomy Reviews 57 (2013) 100–121

(Belokurov 2013)

Discovered before SDSS 
(classical dwarfs)
Discovered with SDSS 
(ultra-faint dwarfs)

Sky Covered by SDSS
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Maximum-Likelihood Searches
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Satellite Radial Profile 

15 July 2013 Keith Bechtol (bechtol@kicp.uchicago.edu) 9 

Currently using Plummer profile 
spatial kernel, which can be 
normalized analytically, and has a 
single half-light radius parameter 
 
Realistic for satellite galaxies 
 
Change the size as a function of 
stellar mass and distance (apply 
some scaling relation), or scan at 
multiple fixed half-light radii ?? 
 
Using 0.1 deg half-light radius for 
the following examples. 

Spatial Model Satellite Color-Magnitude Diagram 

15 July 2013 Keith Bechtol (bechtol@kicp.uchicago.edu) 10 

Example composite isochrone 
made up of 4 individual 
isochrones to represent spread 
in metallicities and ages 
(plotted here as discrete 
sampled points) 
 
Using DES-specific isochrones 
provided by Eduardo Balbinot  
 
PDF is determined by the initial 
mass function 
 
Emphasize that we are 
searching for a stellar 
population 

“Spectral” Model
Mangle Mask 

15 July 2013 Keith Bechtol (bechtol@kicp.uchicago.edu) 11 

https://desdb.cosmology.illinois.edu/confluence/display/DESAST/Mangle+masks+for+DES+operations+data 

Use this SV field 
centered on the 
Bullet cluster 
field for following 
examples 

Survey Sensitivity

A likelihood analysis to simultaneously 
combines spatial and spectral information 

This approach naturally yields a 
membership probability for each star; 

important for spectroscopy

Maximum Likelihood Formalism 
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f is the fraction of satellite galaxy stars which are unmasked,  
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Poisson probability, and follow a maximum likelihood approach 
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Treat spatial and spectral properties of satellite as separable PDFs (normalized 
according to the richness definition). Two color filters are sufficient for stars. 
Take into account the color uncertainty for each individual star. 

Create empirical background model from data which depends only on observed 
magnitudes. Assume density (deg-2 mag-2) to be isotropic on small patches of 
sky. 

i.e., signal probability / (signal + background probability) 

ui = sig prob 
bi = bkg prob 
λ = normalization = number of stars 
f = observable fraction
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The first component, us, depends only on the spatial properties,
while the second component, uc, depends only on the
distribution in color–magnitude space.

We modeled the spatial distribution of satellite member stars
with an elliptical Plummer profile (Plummer 1911), following
the elliptical coordinate prescription of Martin et al. (2008a).
The Plummer profile is sufficient to describe the spatial
distribution of stars in known ultra-faint galaxies (Muñoz
et al. 2012b). The spatial data for catalog object i consist of
spatial coordinates,  B E� { , }s i i i, , while the parameters
of our elliptical Plummer profile are the centroid coordinates,
half-light radius, ellipticity, and position angle, R �s

�B E Gr{ , , , , }0 0 h .
We modeled the color–magnitude component of the signal

PDF with a set of representative isochrones for old, metal-poor
stellar populations, specifically by taking a grid of isochrones
from Bressan et al. (2012) spanning � �Z0.0001 0.001 and

U� �1 Gyr 13.5 Gyr. Our spectral data for star i consist of the
magnitude and magnitude error in each of two filters,
 T T� g r{ , , , }c i i g i i r i, , , , while the model parameters are
composed of the distance modulus, age, and metallicity
describing the isochrone, R U� �M m Z{ , , }c . To calculate
the spectral signal PDF, we weight the isochrone by a Chabrier
(2001) initial mass function (IMF) and densely sample in
magnitude–magnitude space. We then convolve the photometric
measurement PDF of each star with the PDF of the weighted
isochrone. The resulting distribution represents the predicted
probability of finding a star at a given position in magnitude–
magnitude space given a model of the stellar system.

The background density function of the field population is
empirically determined from a circular annulus surrounding
each satellite candidate ( � �◦ ◦r0 . 5 2 . 0). The inner radius of
the annulus is chosen to be sufficiently large that the stellar
population of the candidate satellite does not bias the estimate
of the field population. Stellar objects in the background
annulus are binned in color–magnitude space using a cloud-in-
cells algorithm and are weighted by the inverse solid angle of

the annulus. The effective solid angle of the annulus is
corrected to account for regions that are masked or fall below
our imposed magnitude limit of �g 23 mag. The resulting
two-dimensional histogram for the field population provides
the number density of stellar objects as a function of observed
color and magnitude ( � �deg mag2 2). This empirical determina-
tion of the background density incorporates contamination
from unresolved galaxies and imaging artifacts.
The likelihood formalism above was applied to the Y1A1

data set via an automated analysis pipeline.49 For the search
phase of the algorithm, we used a radially symmetric Plummer
model with half-light radius � ◦r 0 . 1h as the spatial kernel, and
a composite isochrone model consisting of four isochrones
bracketing a range of ages, U � {12, 13.5 Gyr}, and metalli-
cities, �Z {0.0001, 0.0002}, to bound a range of possible
stellar populations. We then tested for a putative satellite
galaxy at each location on a three-dimensional grid of sky
position (0.7 arcmin resolution; nside = 4096) and distance
modulus ( � � �M m16 24; �16 630 kpc).
The statistical significance at each grid point can be

expressed as a Test Statistic (TS) based on the likelihood ratio
between a hypothesis that includes a satellite galaxy versus a
field-only hypothesis:

 M M M�  
¢¡

� � � ¯
±°( ) ( )TS 2 log ˆ log 0 . (4)

Here, M̂ is the value of the stellar richness that maximizes the
likelihood. In the asymptotic limit, the null-hypothesis
distribution of the TS will follow a D 22 distribution with
one bounded degree of freedom (Chernoff 1954). We have
verified that the output distribution of our implementation
agrees well with the theoretical expectation by testing on
simulations of the stellar field. In this case, the local statistical
significance of a given stellar over-density, expressed in

Figure 2. Left: false color gri coadd image of the q◦ ◦0. 3 0. 3 region centered on DES J0335.6−5403. Right: stars in the same field of view with membership
probability �p 0.01i are marked with colored circles. In this color map, red signifies high-confidence association with DES J0335.6−5403 and blue indicates lower
membership probability. The membership probabilities have been evaluated using Equation (2) for the best-fit model parameters listed in Table 1.

49 The Ultra-faint Galaxy Likelihood (UGALI) code; detailed methodology
and performance to be presented elsewhere.
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isochrone. Since it is near the base of the giant branch, the
photometric uncertainties could contribute to this offset in
color, and we consider DES J033544.18−540150.0 a likely
member of Ret II.

Because the stars for which membership is plausible have
velocities quite similar to that of Ret II (and in some cases have
large uncertainties), including or excluding them from the
member sample does not have any significant effect on the
properties we derive for Ret II in Section 4. We show the

correspondence between M2FS spectroscopic members and
photometric membership probability in Figure 3.

3.3.2. GIRAFFE and GMOS

We also identify a handful of Ret II members in the GIRAFFE
and GMOS data sets that were not observed with M2FS. We use
a velocity measurement based on the Paschen lines to confirm that
the candidate blue HB (BHB) star DES J033539.85−540458.1
(Section 3.4) observed by GMOS is indeed a member of Ret II,
with a velocity of 69 ± 6 km s 1� . The GIRAFFE targets included
a bright (g 16.5_ ) star at ( , ) (03:35:23.85,2000 2000B E �

54:04:07.5)� that was omitted from our photometric catalog
and M2FS observations because it is saturated in the coadded
DES images. However, the spectrum of the star makes clear that it
is very metal-poor and is within a few km s 1� of the systemic
velocity of Ret II. While the magnitudes derived from individual
DES frames place it slightly redder than the isochrone that best
matches the lower red giant branch of Ret II, it is also located
inside the half-light radius, and is very likely a member. In fact, it
is probably the brightest star in any of the ultra-faint dwarfs.

Figure 1. (a) DES color–magnitude diagram of Reticulum II. Stars within 14 ′. 65 of the center of Ret II are plotted as small black dots, and stars selected for
spectroscopy with M2FS, GIRAFFE, and GMOS (as described in Section 2.1) are plotted as filled gray circles. Points surrounded by black outlines represent the
stars for which we obtained successful velocity measurements, and those we identify as Ret II members are filled in with red. The four PARSEC isochrones used
to determine membership probabilities are displayed as black lines. (b) Spatial distribution of the observed stars. Symbols are as in panel (a). The half-light radius
of Ret II from Bechtol et al. (2015) is outlined as a black ellipse. (c) Radial velocity distribution of observed stars, combining all three spectroscopic data sets. The
clear narrow peak of stars at v 60_ km s 1� highlighted in red is the signature of Ret II. The hatched histogram indicates stars that are not members of Ret II; note
that there are two bins containing non-member stars near v = 70 km s 1� that are over-plotted on top of the red histogram.

Figure 2. Magellan/M2FS spectra in the Mg b triplet region for three stars
near the edge of the Ret II velocity distribution. The wavelengths of two Mg
lines and an Fe line are marked in the bottom panel, and the third component
of the Mg triplet is just visible at a wavelength of 5185 Å at the right edge of
each spectrum. The spectrum of DES J033540.70−541005.1 (top) appears
similar to that of a Ret II member, but the color, spatial position, and velocity
offset of this star make that classification unlikely. The very strong Mg
absorption in DES J033405.49−540349.9 (middle), as well as the wealth of
other absorption features on the blue side of the spectrum, indicate that the
star is more metal-rich than would be expected for a system as small as Ret II.
DES J033437.34−535354.0 (bottom) is a double-lined binary star with a
velocity separation of ∼60 km s 1� . The redshifted absorption component
from the secondary star is most visible in the middle line of the Mg triplet.

Figure 3. Comparison of photometric membership probabilities determined
from a maximum-likelihood fit to the DES data and spectroscopic membership
as determined from the velocity measured by M2FS.
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Fig. 1.— Locations of the eight new dwarf galaxy candidates reported here (red triangles) along

with nine previously reported dwarf galaxy candidates in the DES footprint (red circles; Bechtol

et al. 2015; Koposov et al. 2015a; Kim & Jerjen 2015b), five recently discovered dwarf galaxy

candidates located outside the DES footprint (green diamonds; Laevens et al. 2015a; Martin et al.

2015; Kim et al. 2015a; Laevens et al. 2015b), and twenty-seven Milky Way satellite galaxies known

prior to 2015 (blue squares; McConnachie 2012). Systems that have been confirmed as satellite

galaxies are individually labeled. The figure is shown in Galactic coordinates (Mollweide projection)

with the coordinate grid marking the equatorial coordinate system (solid lines for the equator and

zero meridian). The gray scale indicates the logarithmic density of stars with r < 22 from SDSS

and DES. The two-year coverage of DES is ⇠ 5000 deg2 and nearly fills the planned DES footprint

(outlined in red). For comparison, the Pan-STARRS 1 3⇡ survey covers the region of sky with

�2000 > �30� (Laevens et al. 2015b).

Blue   - Previously discovered satellites 
Green - Discovered in 2015 with  
             PanSTARRS/SDSS

Red outline - DES footprint 
Red circles - DES Y1 satellites 
Red triangles - DES Y2 satellites

DES Collaboration, ApJ 813, 109 (2015)



Alex Drlica-Wagner   |   Fermilab

Projected Timeline

20

Lo
g 

Sc
al

e



Alex Drlica-Wagner   |   Fermilab

Backup Slides

21



Alex Drlica-Wagner   |   Fermilab

DES

MagLiteS

Magellanic Satellites Survey
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Two-year survey with 
DECam outside of 
the DES area

Image ~1300 deg2 at 
roughly the same 
depth as the first two 
years of DES

Test for a spatial 
association with the 
Magellanic Clouds
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All-Sky Map of DECam Coverage (Feb 26, 2016)

DES only observes 1/6th of the  
sky accessible to DECam

Only 1/3 of the exposures taken 
with DECam are part of DES


